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Abstract In this paper we study the dynamical behavior of the (α, c)-family of itera-
tive methods for solving nonlinear equations, when we apply the fixed point operator
associated to this family on quadratic polynomials. This is a family of third-order iter-
ative root-finding methods depending on two parameters; so, as we show throughout
this paper, its dynamics is really interesting, but complicated. In fact, we have found
in the real (α, c)-plane a line in which the corresponding elements of the family have
a lower number of free critical points. As this number is directly related with the
quantity of basins of attraction, it is probable to find more stable behavior between the
elements of the family in this region.

Keywords Non linear equations · Iterative methods · Dynamics of rational
functions · Parameter planes

1 Introduction

Many problems from Engineering or Science lead to nonlinear equations that may
have analytical roots although we are not capable of finding them. In this case, the
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numerical methods are needed. For the case of problems coming from Chemistry,
nonlinear equations regularly appear; for example, iterative methods can be applied in
the reaction-diffusion equations that arise in autocatalytic chemical reactions (see [10])
or in the analysis of electronic structure of the hydrogen atom in strong magnetic fields
(see [9]). Moreover, numerical treatments of some chemical problems allow to check
the models of observable phenomena [8]. Even more, many problems from Chemistry
consist in finding chemical potentials that are basic for studying other thermodynamic
properties; the modeling of such potentials leads to nonlinear integral equations that
can be reduced to a set of nonlinear algebraic equations (see [10,11] for example). This
encourages the mathematicians to study and improve the numerical methods implied.

A dynamical study of the operators defined by the iterative methods help us to know
more widely the regions where these methods have a good behavior [1].

In some previous papers, we have considered the dynamical study of Chebyshev–
Halley family [7], the King’s class [6], the c-family [4] and, finally, the (α, c)-class
which includes Chebyshev–Halley and c-families. In the study that we are conducting
about (α, c)-family (see [2,3]), we note that the dynamical behavior of this family is
much more complicated because it includes two parameters.

As we have said, iterative methods are used for finding roots of a nonlinear equation
and, from a dynamical point of view, these roots are fixed points of the operator R
associated to the method.

The dynamic studies the asymptotic behavior of the orbits depending on the initial
condition z0:

{z0, R (z0) , R2 (z0) , . . . , Rn (z0) , . . .}

and classifies the starting points from the asymptotic behavior of their orbits (see [12]
for example).

A point z0 ∈ Ĉ is called a fixed point if it satisfies: R (z0) = z0. A periodic point
z0 of period p > 1 is a point such that R p (z0) = z0 and Rk (z0) �= z0, k < p. A
pre-periodic point is a point z0 that is not periodic but there exists a k > 0 such that
Rk (z0) is periodic.

Moreover, a fixed point z0 is called attractor if |R′(z0)| < 1, superattractor if
|R′(z0)| = 0, repulsor if |R′(z0)| > 1 and parabolic if |R′(z0)| = 1.

The basin of attraction of an attractor z∗ is defined as the set of pre-images of any
order:

A (
z∗) = {z0 ∈ Ĉ : Rn (z0)→z∗, n→∞}.

It is known that each basin of attraction needs at least one critical point inside [1].
A point z0 is a critical point of a map R if R fails to be injective in any neighborhood
of z0.

From the results stated in Sect. 2 we present in Sect. 3 a complete study of the critical
points of the (α, c)-family. From this analysis we found some interesting values of
the parameters, whose dynamical planes are analyzed in Sect. 4, that provide stable
elements of the class.
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2 Previous results

The (α, c)-family is a two-parametric class of third-order iterative root-finding meth-
ods defined by:

zn+1 = zn −
(

1 + 1

2

L f (zn)

1 − αL f (zn)
+ cL f (zn)2

)
f (zn)

f ′ (zn)
, (1)

where

L f (z) = f (z) f ′′ (z)
f ′ (z)2

and α and c are complex parameters. As we have pointed before, this class includes
Chebyshev–Halley family for c = 0 and c-family when α = 0.

We apply (1) on quadratic polynomials p (z) = z2 + a. For this polynomial, the
operator Mp (z, a, α, c) associated to (1) is a rational function depending on three
complex parameters: a, α and c. Due to the Scaling theorem, the parameter a can be
obviated and the roots of the polynomial p(z) became 0 and ∞; so, the operator associ-
ated to the iterative method has only two parameters when the Möbius transformation
is applied.

For this operator we obtain the following fixed points: 0,∞ (that correspond to the
roots of p(z)), z = 1 and six fixed points that are the roots of a 6-degree polynomial.
These last seven points are called strange fixed points, as they do not correspond to
any root of p(z).

In this section we present the explicit expressions of the strange fixed points and
the critical points. An exhaustive proof can be found in [2], and here we only show an
sketch of it.

The associated operator of (1), after the Möbius transformation h(z) = z+i
√

a
z−i

√
a

, is:

Op(z, α, c) = z3 (1 + z)4 (−2 + 2α − z) + 4c (1 + z (2 − 2α + z))

(1 + z)4 (2αz − 1 − 2z) + 4cz3 (1 + z)2 − 8αcz4
(2)

and the relation Op (z, α, c) − z can be written as:

Op (z, α, c) − z = −z(z − 1)
P (z, α, c)

(1 + z)4(2αz − 1 − 2z) + 4cz3(1 + z)2 − 8αcz4

where P (z, α, c) is the 6-degree polynomial:

P (z, α, c) = z6 + (7 − 2α) z5 + (19 − 8α + 4c) z4 + (26 − 12α + 8c − 8αc) z3

+ (19 − 8α + 4c) z2 + (7 − 2α) z + 1. (3)

So, the fixed points of Op(z, α, c) are 0,∞, 1 and the six roots of the 6-degree
symmetric polynomial P (z, α, c). The fixed points are given in the following result
(see [2]).
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Theorem 1 The fixed points of the operator (2), associated to the bi-parametric family
of iterative methods (1) on quadratic polynomials are:

– z = 0 and z = ∞, corresponding to the roots of the polynomial p(z).
– Seven strange fixed points: z = 1 and the following six points:

z1 (α, cx) = x1 (α, c) +
√

x1 (α, c)2−4

2
, z2 (α, c) = x1 (α, c)−

√
x1 (α, c)2−4

2
,

z3 (α, c) = x2 (α, c) +
√

x2 (α, c)2−4

2
, z4 (α, c) = x2 (α, c)−

√
x2 (α, c)2−4

2
,

z5 (α, c) = x3 (α, c) +
√

x3 (α, c)2−4

2
, z6 (α, c) = x3 (α, c)−

√
x3 (α, c)2−4

2
,

(4)

where

x1 (α, c) = 1

3
(2α − 7) + 1

3

(
3
√

f (α, c) + 3
√

g (α, c)
)

,

x2 (α, c) = 1

3
(2α − 7) − 1

6

(
3
√

f (α, c) + 3
√

g (α, c)
)

− i

√
3

6

(
3
√

f (α, c) − 3
√

g (α, c)
)

,

x3 (α, c) = 1

3
(2α − 7) − 1

6

(
3
√

f (α, c) + 3
√

g (α, c)
)

+ i

√
3

6

(
3
√

f (α, c) − 3
√

g (α, c)
)

and

f (α, c) = (−1 + 2α)3 + 18 (1 + 4α) c

+ 6
√

3
√

c
(
2α (−1 + 2α)3 + c

(−1 + 40α + 32α2 + 16c
))

,

g (α, c) = (−1 + 2α)3 + 18 (1 + 4α) c

− 6
√

3
√

c
(
2α (−1 + 2α)3 + c

(−1 + 40α + 32α2 + 16c
))

.

Now, we present the expressions of the critical points. The critical points are the
solutions of O ′

p (z, α, c) = 0, where the prime means the derivative of Op (z, α, c)
with respect to z. A critical point is called free if it does no correspond to any root of
p(z). The expression of O ′

p (z, α, c) can be written as

O ′
p(z, α, c) = −2z2 (1 + z)4 Q (z, α, c)

(
(1 + z)4 (2αz − 1 − 2z)+4cz3 (1 + z)2 −8αcz4

)2 , (5)

where
Q (z, α, c) = b0 + b1z + b2z2 + b3z3 + b2z4 + b1z5 + b0z6 (6)
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and

b0 = −3 + 3α + 6c,

b1 = −18 + 20α − 4α2 + 16c − 24αc,

b2 = −45 + 53α − 16α2 + 10c − 16αc + 24α2c,

b3 = −60 + 72α − 24α2 + 16αc − 32α2c.

Then, the critical points are z = 0, z = ∞, z = −1 and the roots of the 6-degree
symmetric polynomial Q (z, α, c). The critical points are given in the following result
(see [3]).

Theorem 2 The critical points of the operator (2), associated to the bi-parametric
family of iterative methods (1) are z = 0 and z = ∞, that are associated to the non
strange fixed points, and the following free critical points:

– For α �= 1 − 2c, the points z = −1 and

z1 (α, c) = x1 (α, c) +
√

x1 (α, c)2 − 4

2
, z2 (α, c) = x1 (α, c) −

√
x1 (α, c)2 − 4

2
,

z3 (α, c) = x2 (α, c) +
√

x2 (α, c)2 − 4

2
, z4 (α, c) = x2 (α, c) −

√
x2 (α, c)2 − 4

2
,

z5 (α, c) = x3 (α, c) +
√

x3 (α, c)2 − 4

2
, z6 (α, c) = x3 (α, c) −

√
x3 (α, c)2 − 4

2
,

(7)

where

x1 (α, c) = − b1

3b0
+ s1 + s2,

x2 (α, c) = − b1

3b0
− 1

2
(s1 + s2) + i

√
3

2
(s1 − s2) ,

x3 (α, c) = − b1

3b0
− 1

2
(s1 + s2) − i

√
3

2
(s1 − s2)

and

s1 = 3

√

−q + √
D

2
, p = −3 + b2

b0
− b2

1

3b2
0

,

s2 = 3

√

−q − √
D

2
, q = b3 − b1

b0
− b1b2

3b2
0

+ 2
b3

1

27b3
0

,

D = 4

27
p3 + q2.
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– For α = 1 − 2c and c �= ±
√

5
2 , the points z = −1 and

z1 (α, c) = x1 (α, c) +
√

x1 (α, c)2−4

2
, z2 (α, c) = x1 (α, c)−

√
x1 (α, c)2−4

2
,

z3 (α, c) = x2 (α, c) +
√

x2 (α, c)2−4

2
, z4 (α, c) = x2 (α, c)−

√
x2 (α, c)2−4

2
,

(8)

where
x1,2 (α, c) = − c1

2c0
± α

c0

√
α(α − 1)(40 − 29α + 9α2).

– For α = 1 − 2c and c =
√

5
2 , the point z = −1 and the two complex points:

z1,2 (α, c) = 1

71

(

−86 + 20
√

5 ± i

√

5
(
−871 + 688

√
5
))

.

– For α = 1 − 2c and c = −
√

5
2 , the point z = −1 and the two real points:

z1,2 (α, c) = 1

71

(

−86 − 20
√

5 ±
√

5
(

871 + 688
√

5
))

.

Let us notice that the polynomials (3) and (6) that provide the strange fixed points
and the free critical points, respectively, are 6-degree symmetric polynomials. This
symmetry allows us to obtain the exact analytical solutions. In the following we give
a brief sketch of the proof of Theorem 2; the same sketch is valid for Theorem 1
considering b0 = 1.

For b0 �= 0, the roots of Q (z, α, c) are the solutions of the equation

1 + a1z + a2z2 + a3z3 + a2z4 + a1z5 + z6 = 0,

where ai = bi

b0
, i = 1, 2, 3 and α �= 1 − 2c. The change of variable z + 1

z
= x leads

to the cubic equation
x3 + ax2 + bx + c = 0,

where
a = a1, b = −3 + a2 and c = a3 − 2a1.

The quadratic term is eliminated by means of the change

x = y − a

3

and the final equation is
y3 + py + q = 0, (9)
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where

p = b − a2

3
= −3 + b2

b0
− b2

1

3b2
0

,

q = 2a3

27
− ab

3
+ c = b3 − b1

b0
− b1b2

3b2
0

+ 2b3
1

27b3
0

.

By using the change y = s1 + s2, then y3 = s3
1 + s3

2 + 3s1s2 y is obtained. By
identifying the coefficients of this equation with the coefficients of equation (9) we
obtain

s3
1 + s3

2 = −q, (10)

s3
1s3

2 = − p3

27
. (11)

So, s3
1 and s3

2 are solutions of the quadratic equation W 2 + qW − p3

27 = 0, that is,

s3
1 , s3

2 = −q ±
√

q2 + 4p3

27

2
.

Therefore, the three solutions of (9) are

x1 = a

3
+ s1 + s2,

x2 = a

3
− 1

2
(s1 + s2) + i

√
3

2
(s1 − s2) ,

x3 = a

3
− 1

2
(s1 + s2) − i

√
3

2
(s1 − s2) ,

Undoing all the changes, the six roots of the symmetric polynomial are obtained
from

z = x ± √
x2 − 4

2
, (12)

for the different values of variable x .
The independent term is 1 for the polynomial (3) associated to the fixed points, but

we must divide by b0 for the polynomial (6) associated to the critical points. So, we
must study what happens with the critical points when b0 = 0, that is, on the line
c = 1−α

2 .
Let us obtain the roots of the polynomial Q (z, α, c) in this case. If we make the

substitution c = 1−α
2 in Q (z, α, c) , as b0 = 0 we have the polynomial

Q

(
z, α,

1 − α

2

)
= c0z+c1z2+c2z3+c1z4+c0z5 = z (c0+c1z+c2z2+c1z3+c0z4),
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where

c0 = −10 + 8α2,

c1 = 4(−10 + 10α + α2 − 3α3),

c2 = −60 + 80α − 48α2 + 16α3.

Then, the critical points are z = 0, z = ∞ and the four roots of the four-degree
symmetric polynomial:

q4 (z, α) = c0 + c1z + c2z2 + c1z3 + c0z4.

If c0 �= 0, we can divide q4 (z, α) by c0 and consider the polynomial

1 + c1

c0
z + c2

c0
z2 + c1

c0
z3 + z4.

As we know that z = 0 is not a root of this polynomial, we make the change

x = 1

z
+ z.

Then, it is transformed in

x2 + c1

c0
x + c2

c0
= 0,

whose roots are

x1,2(α) = − c1

2c0
± α

c0

√
α(α − 1)(40 − 29α + 9α2).

Then, the roots of Q
(
z, α, 1−α

2

)
are z = 0 and the four values given by

z =
x1,2 ±

√
x2

1,2 − 4

2

Taking into account the range of α where x2
1 and x2

2 are lower than 4, we obtain the
number of real and complex roots of q4 (z, α) on the line c = 1−α

2 .

– If α < 1
2 (−5 − √

65), the polynomial q4 (z, α) has 2 real and 2 complex roots.

– For 1
2 (−5 − √

65) ≤ α ≤ 0, the polynomial q4 (z, α) has 4 real roots.
– For 0 < α < 1, the polynomial q4 (z, α) has 4 complex roots.
– For α = 1, the polynomial q4 (z, α) has 1 real root −1 with multiplicity 4.
– For 1 < α ≤ 1

2 (−5 + √
65), the polynomial q4 (z, α) has 2 real and 2 complex

roots.
– For 1

2 (−5 + √
65) < α < 2, the polynomial q4 (z, α) has 4 complex roots.

– For α ≥ 2, the polynomial q4 (z, α) has 2 real and 2 complex roots.
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Fig. 1 Bifurcation regions of critical points. a α < 0, b α ≥ 0

Finally, we must to analyze the case c0 = 0, that is when α = ±
√

5
2 . The polynomial

q4 (z, α) becomes

c1z + c2z2 + c1z3 = z(c1 + c2z + c1z2),

so, the critical points are z = 0 and the two roots of the symmetric 2-degree polynomial

q2 (z, α) = c1 + c2z + c1z2.

Then,

– If α = −
√

5
2 , the polynomial q2 (z, α) has 2 real roots.

– If α =
√

5
2 , the polynomial q2 (z, α) has 2 complex roots.

The (α, c)-plane is divided into different regions where the number and nature of the
critical points change, as was stated in [2] (see Fig. 1). But the number of critical points
different from 0 and ∞ reduces to 4 on the line c = 1−α

2 ; and on this line, the number

of critical points different from 0 and ∞ reduces to 2 on the points
(
−

√
5

2 , 2+√
5

4

)
and

(√
5

2 , 2−√
5

4

)
.

3 Study of the critical points

From the stated in Sect. 2 we can determine the number of complex and real and
critical points depending on the values of parameters α and c.
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For −1 + α + 2c �= 0 the values x1, x2 and x3 are real if D ≤ 0 and one of these
values is real and the other two are conjugated complex values if D > 0. So, the
expression D = 0 give us a bifurcation curve formed by the two functions:

C± =
−α

((−3575+5360α−2696α2+384α3+36α4
)±α

√
3

(
5−6α+2α2

)(
95−58α+6α2

)3
)

16 (−2+α) (−5 + 3α)3

Moreover, as we have to evaluate
√

xi (α, c)2 − 4 in 12, from xi = 2, we obtain
the bifurcations curves α = 2, c = 0 and c = 2(2α−3)

α−2 (the detail of these calculations
can be seen in [2]).

The bifurcation curves separate the (α, c)−plane into different regions. In order to
visualize the regions properly they must be shown in different figures (see [2]). In this
paper we show two of them including the line c = 1−α

2 (see Fig. 1).
Now, let us analyze the bifurcations of the 6 critical points zi in the (α, c)−plane

when crossing these curves. As we made with the fixed points, we consider different
fixed values for the parameter α and we move the value of the parameter c in order to
cover all regions. In the bifurcation diagrams the critical points z1, z2, z3, z4, z5 and
z6 defined in (7) are depicted in different colors.

On the line c = 1−α
2 the number of critical points different from 0 and ∞ is reduced

to four; and it is reduced to two for α = ±
√

5
2 . Moreover, these points are bifurcation

points because the line c = 1−α
2 is tangent to the bifurcation curves C+ and C−,

respectively.
The bifurcation of critical points give us information about the number of attractive

basins, because each attractive basin needs at least one critical point inside. So, a
change of the critical points can produce a change in the dynamical behavior of the
system.

In the following we analyze the bifurcation diagrams for α = ±
√

5
2 .

3.1 Bifurcation diagram for α = −
√

5
2

The bifurcation diagram of critical points for α = −
√

5
2 is shown in Fig. 2. We describe

the bifurcations by increasing the value of c.

For c < C+
(
−

√
5

2

)
≈ −0.0275036 the six critical points are complex. A first bifur-

cation occurs when crossing the curve C+, two pairs of complex roots of Q(z, α, c)
become two double real roots while z1 and z2 remain complex. For c = 0 two of the
real roots reach the value −1 and afterwards become a pair of complex conjugated;
moreover, the two complex z1 and z2 take the value −1 but they continue being com-
plex. So, at the bifurcation point there are six real roots, one is −1 with multiplicity
four. After this bifurcation there are two real and four complex roots. We can see the
detail of these two bifurcations in Fig. 2b.

For c = 2+√
5

4 ≈ 1.059016994 a new bifurcation occurs. At this point the line
c = 1−α

2 is tangent to curve C− so both curves are simultaneously crossed. We show

123



J Math Chem (2015) 53:807–827 817

1 2 3 4
c

-10

-7.5

-5

-2.5

2.5

5

7.5

z

(a)

-0.02 0.02 0.04 0.06
c

-3

-2.5

-2

-1.5

-1

-0.5

z

(b)

Fig. 2 Bifurcation diagram of critical points for α = −
√

5
2 . a α = −

√
5

2 , b a detail

that a pair of complex conjugated roots goes to zero and the other one goes to infinity.
This is a remarkable case because the number of critical points has been reduced: there
are only two critical points different from zero and infinity and they are inverse; so,
there is only one free independent critical point. After the bifurcation point there are
six different real critical points.

The last bifurcation occurs when crossing the hyperbola c = 2(2α−3)
α−2 for c =

4
11

(
7 + √

5
)

≈ 3.3585701736. In this case, the two real roots reach the value 1 and

became a pair of complex conjugated roots. Then, for c > 4
11

(
7 + √

5
)

there are four

real roots.

3.2 Bifurcation diagram for α =
√

5
2

We show the bifurcation diagram of critical points for α =
√

5
2 in Fig. 3. As above,

we describe the bifurcations by increasing the value of c.

For c < C−
(√

5
2

)
≈ −12.7148 there are six complex critical points, after crossing

the curve C− there are also six complex critical points and two of them have reached
multiplicity two on the curve C−.

For c = 2−√
5

4 ≈ −0.05 9017 both C+ and the line c = 1−α
2 are crossed. At this

bifurcation point, two critical points become zero and other two are infinity while the
other two remain complex (see Fig. 3). In this case the reduction of the number of
critical points is interesting from a numerical point of view because there are no real
critical points different from zero and infinity. After this bifurcation, there are four
real and two complex critical point.

At c = 0 two real roots reach the value −1 and became complex. For positive values

of c we have two real and four complex critical points up to the value c = 4(7−√
5)

11

corresponding to the crossing of the hyperbola c = 2(2α−3)
α−2 ; at this point the two real

roots reach the value 1 and there are six complex critical points for bigger values of c.
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Fig. 3 Bifurcation diagram of critical points for α =
√

5
2 .

On the other hand, a change in the stability of the fixed points produces bifurcations
in the dynamics. In the next section, we study this stability for given values of the
parameter α.

4 Dynamical planes

In this section, we analyze the dynamical behavior of some particular methods lying
on the line c = 1−α

2 , along the intervals described in Sect. 2. The interest of these
regions is that, for these elements of the (α, c)-family, there exist a lower number of
free critical points. Therefore, a more stable behavior can be expected.

In the following we analyze the behavior of the iterative methods by using analytical
tools as well as the dynamical planes associated with the scheme on quadratic polyno-
mials. These planes has been generated by slightly modifying the routines described
in [5]. In them, a mesh of 400 × 400 points has been used, 40 has been the maximum
number of iterations involved and 10−3 the tolerance used as a stopping criterium.
Then, if an starting point of this mesh converges to one of the fixed points of the
operator, that is, it is at a distance to the fixed point (in norm) lower than 10−3, it is
painted in the color assigned to the point which has converged to (marked as a white
star in the figures). The color used is brighter when the number of iterations is lower.
If it reaches the maximum number of iterations without converging to any of the roots,
it is painted in black.

4.1 α < −5−√
65

2

Let us study the case α = −9; then, the fixed point operator is

Op(z,−9, 5) = − z4
(−319 + 104z + 86z2 + 24z3 + z4

)

−1 − 24z − 86z2 − 104z3 + 319z4
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Fig. 4 Dynamical planes for α < −5±√
65

2 . a Periodic orbit for α = −9, b periodic orbit for α = −9

and the set of fixed points is

{−20.8994,−1.94675 + 4.54476i,−1.94675 − 4.54476i, 1,

−0.079639 + 0.18592i,−0.079639 − 0.18592,−0.0478483, 0,∞},

whose stability is respectively given by the derivative of the operator as

{26.4403, 3.66872, 3.66872, 6.76923, 3.66872, 3.66872, 26.4403, 0, 0}.

Then, only 0 and ∞ are superattracting and the rest of fixed points are repulsive.
Nevertheless, there exist in this case two periodic orbits of period 2,

{0.2670 − 0.9637i, 0.8007 + 0.5992i} and {0.2670 + 0.9637i, 0.8007 − 0.5992i}.

On the other hand, the list of critical points is

{−15.3209,−1, 0.896866+0.442302i, 0.896866 − 0.442302i,−0.0652702, 0,∞}.

Then, it is clear that two free critical points yield near the elements of the periodic
orbit, so it will be attractive, as it is seen in Fig. 4 and can be checked by calculating
the multiplier of the elements of the orbit.

|Op′(0.2670 + 0.9637i,−9, 5) · Op′(0.8007 − 0.59927i,−9, 5)| = 0.71399 < 1.

Similar performance can be found for other values of α in this interval.
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4.2 −5−√
65

2 ≤ α ≤ −
√

5
2

In this range of values of α, on c = 1−α
2 , different kinds of behavior can be found but

with a common fact: the absence of attracting strange fixed points. This does not imply
directly stable behavior, although it appears in a wide range of this interval. However,
chaos and attracting periodic orbits can be found for specific values of parameter α.

As it can be observed in Fig. 5a, for α = −5−√
65

2 there exist only two attracting
fixed points, 0 and ∞. This fact is easily checked by analyzing the fixed point operator

Op

(

z,
−5 − √

65

2
,

7 + √
65

4

)

= − z4
(−319 + 104z + 86z2 + 24z3 + z4

)

−1 − 24z − 86z2 − 104z3 + 319z4 .

The set of strange fixed points is

{−15.928,−1.93584 + 3.95386i,−1.93584 − 3.95386i,−0.0998862 + 0.204013i,

−0.0998862 − 0.204013i,−0.0627824}.

Let us notice that, in this case, z = 1 is not a fixed point. In fact, it can be checked that
{−1, 1} is a neutral periodic orbit, that acts as a repulsive one (chaotic area around the
points of the orbit). It is a big region of unstable points that belong to the Julia set.

It can be also seen in Fig. 5b, c, obtained for α = −6, that small black regions
appear, besides the basins of 0 and ∞. In this case, the set of fixed points is

{−14.8553,−1.93295 + 3.81401i,−1.93295−3.81401i, 1,−0.105724 + 0.20861i,

−0.105724 − 0.20861,−0.0673159, 0,∞}

and the value of derivative of Op(z) at these fixed points gives us their stability:

{20.6594, 3.97736, 3.97736, 32, 3.97736, 3.97736, 20.6594, 0, 0}.

Then, it is clear that all the strange fixed points are repulsive. So, what is the origin of
the black regions? If we solve the equation

Op

(
Op

(
z,−6,

7

2

)
,−6,

7

2

))
= z,

a great amount of 2-periodic orbits appear, but only nine of them are attractive, specif-
ically

{−3.412851, 1.599830}, {−2.872085, 1.256418},
{−1.202891 + 1.248838i, 1.050520 + 0.105422i}, {−1.202891 − 1.248838i, 1.050520 − 0.105422i},
{0.795914, −0.348179}, {0.625066, −0.293010},
{−0.400091 + 0.415373i, 0.942418 + 0.094574i}, {−0.400091 − 0.415373i, 0.942418 − 0.094574i},
{0.305437, −0.072694},
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Fig. 5 Dynamical planes for −5−√
65

2 ≤ α ≤ −
√

5
2 . a α = −5−√

65
2 , b periodic orbit for α = −6, c

periodic orbit for α = −6, d α = −4, e α = −2, f α = −
√

5
2
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being the value of the stability function at each of them, respectively,

{0.812332, 0.469646, 0.343289, 0.343289, 0.348759, 0.671555, 0.925905,

0.925905, 0.53973}.

Only two of these orbits are drawn in Fig. 5b, c.

The situation is different for α = −4, α = −2, even α = −
√

5
2 (Fig. 5d–f, respec-

tively); the observed stable behavior comes from the absence of attractive strange fixed

or periodic points. In fact, the set of strange fixed points for α = −
√

5
2 is

{−4.68798,−1.92501 + 2.05826i,−1.92501 − 2.05826i,

1,−0.24238 + 0.259159i,−0.24238 − 0.259159i,−0.213311}

and the associate multipliers are

{14.201, 6.67849, 6.67849, 3.47894, 6.67849, 6.67849, 14.201}.

Moreover, there are no periodic orbits and the free critical points are:

{−3.38705,−1,−0.295242}.

Let us remark that this value of parameter α reduces the number of free critical
points to three. This provides the stable behavior in its neighborhood.

4.3 −√
5

2 < α ≤ 0

A very stable behavior is also observed for this range of α-values on the line c = 1−α
2 ,

see Fig. 6. The case α = 0 corresponds to a stable element of the Chebyshev–Halley
family, meanwhile α = −1 (and c = 1), corresponds to a good element of the (α, c)-
family. In this case, the associate fixed point operator is

Op(z,−1, 1) = z4 1 + 24z + 22z2 + 8z3 + z4

1 + 8z + 22z2 + 24z3 + z4 .

All the strange fixed points are repulsive and the free critical points lie on the two
basins of 0 and ∞. The free critical points are {−28.4549,−3.19723,−1,−0.31277,

−0.0351434}.

4.4 0 < α ≤ 1

The same stable behavior is obtained for values of the parameter α in the interval
(0, 1]. In Fig. 7a we show the dynamical plane corresponding to a stable element of
the (α, c)-family, for α = 1

2 . There are only two basins of attraction, associated to the
solutions of the problem.

123



J Math Chem (2015) 53:807–827 823

IRe{z}

IIm
{z

}

−5 0 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

(a)
IRe{z}

IIm
{z

}

−5 0 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

(b)

Fig. 6 Dynamical planes for −√
5

2 < α ≤ 0. a α = −1, b α = 0
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Fig. 7 Dynamical planes for 0 < α ≤ 1. a α = 1
2 , b α = 1

In case α = 1, the behavior observed in Fig. 7b corresponds to operator

Op(z, 1, 0) = z4,

that is, as stable as Newton’s method but with fourth-order of convergence. This scheme
is known as super-Halley’s method.

Unlike Newton’s scheme, this one has strange fixed points:

{−0.5 − 0.866025i,−0.5 + 0.866025i, 1},
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Fig. 8 Dynamical planes for 1 < α ≤ −5+√
65

2 . a α =
√

5
2 , b α = −5+√

65
2

but they are repulsive as it is stated by the value of the stability function on them,
{4, 4, 4}.

4.5 1 < α ≤ −5+√
65

2

In this interval, we can found another value of the parameter, α =
√

5
2 , such that the

number of free critical points is reduced to three (see Fig. 8a),

{−1,−0.581389 + 0.813626i,−0.581389 − 0.813626i}.

The strange fixed points are

{−2.13533,−0.593699 + 0.931668i,−0.593699 − 0.931668i,

1,−0.486445 + 0.76336i,−0.486445 − 0.76336i,−0.468311}

that are repulsive, as it can be stated at the sight of their values at the stability function

{11.4525, 1.83595, 1.83595, 4.46589, 1.83595, 1.83595, 11.4525}.

Moreover, there are no periodic orbits and the general behavior is very stable.

As in case α = −5−√
65

2 , the strange fixed points are repulsive and there exists one
neutral periodic orbit at {−1, 1}. This causes the chaotic region around these points
(see Fig. 8b).
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Fig. 9 Dynamical planes for −5+√
65

2 < α < 2. a Periodic orbit for α = 9
5 , b α = 1.9

4.6 −5+√
65

2 < α < 2

For α = 9
5 , the fixed point operator is

Op

(
z,

9

5
,−2

5

)
= z4 199 + 100z + 10z2 − 60z3 − 25z4)

−25 − 60z + 10z2 + 100z3 + 199z4 ,

the only attracting fixed points are 0 and ∞, as the strange fixed points

{−3.0901, 0.0038 + 1.1140i, 0.0038 − 1.1140i, 1, 0.0030 + 0.8976i,

0.0030 − 0.8976i,−0.3236}

are all repulsive. The free critical points are, in this case

{−1,−0.165793 + 0.986161i,−0.165793 − 0.986161i, 0.951723

+0.306959i, 0.951723 − 0.306959i}.

The two last free critical points are close to the 2-periodic orbit {0.96484 +
0.26285i, 0.96484 − 0.26285i} that is then attractive. It can be observed in Fig. 9a.

When α = 1.9 is considered, there exist three attracting strange fixed points, as the
value of the stability function at

{−3.17486, 0.121291 + 0.992617i, 0.121291 − 0.992617i,

1, 0.0236248 + 0.999721i, 0.0236248 − 0.999721i,−0.314975}
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Fig. 10 Dynamical planes for α ≥ 2. a α = 2, b α = 3

is

{7.17274, 1.16358, 1.16358, 0.514469, 0.816345, 0.816345, 7.17274}.

This yields to a dynamical plane, Fig. 9b, with five different basins of attraction.

4.7 α ≥ 2

The case α = 2 is specially interesting; the operator associated to the method is

Op

(
z, 2,−1

2

)
= −z4 −11 − 6z − 2z2 + 2z3 + z4

−1 − 2z + 2z2 + 6z3 + 11z4

and, by solving the equation Op(z, 2,− 1
2 ) = z, the following fixed points are found:

{−3.25426, 1, i,−i, 0.280776 + 0.959773i, 0.280776 − 0.959773i,

−0.307289, 0,∞}.

By evaluating them at the stability function, the following values are obtained:

{7.02214, 0, 0.5, 0.5, 1.35286, 1.35286, 7.02214, 0, 0}.

We observe that three superattracting points appear, 0,∞ and 1. Moreover, z = i and
z = −i are also attracting and they will have also their own basin of attraction (see
Fig. 10a), as there exist two free critical points near them, as can be observed in the
list:

{1,−0.0909091 + 0.995859i,−0.0909091 − 0.995859i}.
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The existence of several basins of attraction corresponding to strange fixed points
is a common behavior in this interval, as can be seen in Fig. 10b, for α = 3.

5 Conclusions

In a search of the most stable elements of (α, c)-family, we have found a region
of the real (α, c)-plane such that the number of free critical points is reduced. As
any basin of attraction must include a critical point, the existence of values of the
parameters with a lower number of critical points gives us a hint about the existence
of stable behavior. Iterative methods corresponding to values of (α, c) in the line

c = 1−α
2 , α ∈

[
−5.9,

−5+√
(54)

2

)
present a stable behavior. This performance is due

to the absence of basins of attraction of strange fixed points or attracting periodic
orbits.

The study of the stability of these methods when they are applied to more compli-
cated nonlinear equations is a subject that is still starting.
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